MakeItFrom.com
Menu (ESC)

7049 Aluminum vs. S15700 Stainless Steel

7049 aluminum belongs to the aluminum alloys classification, while S15700 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049 aluminum and the bottom bar is S15700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
200 to 460
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 6.2 to 7.0
1.1 to 29
Fatigue Strength, MPa 160 to 170
370 to 770
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 300 to 310
770 to 1070
Tensile Strength: Ultimate (UTS), MPa 510 to 530
1180 to 1890
Tensile Strength: Yield (Proof), MPa 420 to 450
500 to 1770

Thermal Properties

Latent Heat of Fusion, J/g 370
290
Maximum Temperature: Mechanical, °C 180
870
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 480
1400
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
15
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.1
3.4
Embodied Energy, MJ/kg 140
47
Embodied Water, L/kg 1110
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 34
17 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 1440
640 to 4660
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 46 to 47
42 to 67
Strength to Weight: Bending, points 46 to 47
32 to 43
Thermal Diffusivity, mm2/s 51
4.2
Thermal Shock Resistance, points 22 to 23
39 to 63

Alloy Composition

Aluminum (Al), % 85.7 to 89.5
0.75 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0.1 to 0.22
14 to 16
Copper (Cu), % 1.2 to 1.9
0
Iron (Fe), % 0 to 0.35
69.6 to 76.8
Magnesium (Mg), % 2.0 to 2.9
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
6.5 to 7.7
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 7.2 to 8.2
0
Residuals, % 0 to 0.15
0