MakeItFrom.com
Menu (ESC)

7049A Aluminum vs. Grade 5 Titanium

7049A aluminum belongs to the aluminum alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7049A aluminum and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 5.0 to 5.7
8.6 to 11
Fatigue Strength, MPa 180
530 to 630
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 27
40
Shear Strength, MPa 340 to 350
600 to 710
Tensile Strength: Ultimate (UTS), MPa 580 to 590
1000 to 1190
Tensile Strength: Yield (Proof), MPa 500 to 530
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 370
410
Maximum Temperature: Mechanical, °C 200
330
Melting Completion (Liquidus), °C 640
1610
Melting Onset (Solidus), °C 430
1650
Specific Heat Capacity, J/kg-K 850
560
Thermal Conductivity, W/m-K 130
6.8
Thermal Expansion, µm/m-K 24
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
36
Density, g/cm3 3.1
4.4
Embodied Carbon, kg CO2/kg material 8.2
38
Embodied Energy, MJ/kg 150
610
Embodied Water, L/kg 1100
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28 to 32
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1800 to 1990
3980 to 5880
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
35
Strength to Weight: Axial, points 52 to 53
62 to 75
Strength to Weight: Bending, points 50 to 51
50 to 56
Thermal Diffusivity, mm2/s 50
2.7
Thermal Shock Resistance, points 25
76 to 91

Alloy Composition

Aluminum (Al), % 84.6 to 89.5
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 1.2 to 1.9
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.5
0 to 0.4
Magnesium (Mg), % 2.1 to 3.1
0
Manganese (Mn), % 0 to 0.5
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.4
0
Titanium (Ti), % 0 to 0.25
87.4 to 91
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Zinc (Zn), % 7.2 to 8.4
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0
0 to 0.4