MakeItFrom.com
Menu (ESC)

705.0 Aluminum vs. ACI-ASTM CN7MS Steel

705.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CN7MS steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 705.0 aluminum and the bottom bar is ACI-ASTM CN7MS steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 62 to 65
160
Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 8.4 to 10
39
Fatigue Strength, MPa 63 to 98
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 240 to 260
540
Tensile Strength: Yield (Proof), MPa 130
230

Thermal Properties

Latent Heat of Fusion, J/g 390
340
Maximum Temperature: Mechanical, °C 180
1040
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 610
1350
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.4
5.1
Embodied Energy, MJ/kg 150
71
Embodied Water, L/kg 1170
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 20
170
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 130
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 24 to 26
19
Strength to Weight: Bending, points 31 to 32
19
Thermal Diffusivity, mm2/s 55
3.2
Thermal Shock Resistance, points 11
13

Alloy Composition

Aluminum (Al), % 92.3 to 98.6
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.4
18 to 20
Copper (Cu), % 0 to 0.2
1.5 to 2.0
Iron (Fe), % 0 to 0.8
45.4 to 53.5
Magnesium (Mg), % 1.4 to 1.8
0
Manganese (Mn), % 0 to 0.6
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
22 to 25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
2.5 to 3.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 3.3
0
Residuals, % 0 to 0.15
0