MakeItFrom.com
Menu (ESC)

705.0 Aluminum vs. AISI 316Cb Stainless Steel

705.0 aluminum belongs to the aluminum alloys classification, while AISI 316Cb stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 705.0 aluminum and the bottom bar is AISI 316Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 62 to 65
190
Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 8.4 to 10
34
Fatigue Strength, MPa 63 to 98
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 240 to 260
580
Tensile Strength: Yield (Proof), MPa 130
230

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 180
940
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 610
1410
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 140
15
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
22
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.4
4.4
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1170
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 20
160
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 130
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 24 to 26
20
Strength to Weight: Bending, points 31 to 32
20
Thermal Diffusivity, mm2/s 55
4.1
Thermal Shock Resistance, points 11
13

Alloy Composition

Aluminum (Al), % 92.3 to 98.6
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.4
16 to 18
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.8
60.9 to 72
Magnesium (Mg), % 1.4 to 1.8
0
Manganese (Mn), % 0 to 0.6
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Niobium (Nb), % 0
0 to 1.1
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.2
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 3.3
0
Residuals, % 0 to 0.15
0