MakeItFrom.com
Menu (ESC)

705.0 Aluminum vs. EN 1.7362 Steel

705.0 aluminum belongs to the aluminum alloys classification, while EN 1.7362 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 705.0 aluminum and the bottom bar is EN 1.7362 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 62 to 65
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 8.4 to 10
21 to 22
Fatigue Strength, MPa 63 to 98
140 to 250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 240 to 260
510 to 600
Tensile Strength: Yield (Proof), MPa 130
200 to 360

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Maximum Temperature: Mechanical, °C 180
510
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 140
40
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 110
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.5
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.4
1.8
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1170
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 20
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 130
100 to 340
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 24 to 26
18 to 21
Strength to Weight: Bending, points 31 to 32
18 to 20
Thermal Diffusivity, mm2/s 55
11
Thermal Shock Resistance, points 11
14 to 17

Alloy Composition

Aluminum (Al), % 92.3 to 98.6
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0 to 0.4
4.0 to 6.0
Copper (Cu), % 0 to 0.2
0 to 0.3
Iron (Fe), % 0 to 0.8
91.5 to 95.2
Magnesium (Mg), % 1.4 to 1.8
0
Manganese (Mn), % 0 to 0.6
0.3 to 0.6
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0
0 to 0.3
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 3.3
0
Residuals, % 0 to 0.15
0