MakeItFrom.com
Menu (ESC)

705.0 Aluminum vs. EN 2.4680 Cast Nickel

705.0 aluminum belongs to the aluminum alloys classification, while EN 2.4680 cast nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 705.0 aluminum and the bottom bar is EN 2.4680 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 8.4 to 10
9.1
Fatigue Strength, MPa 63 to 98
120
Poisson's Ratio 0.33
0.26
Shear Modulus, GPa 26
84
Tensile Strength: Ultimate (UTS), MPa 240 to 260
600
Tensile Strength: Yield (Proof), MPa 130
260

Thermal Properties

Latent Heat of Fusion, J/g 390
350
Maximum Temperature: Mechanical, °C 180
1050
Melting Completion (Liquidus), °C 640
1360
Melting Onset (Solidus), °C 610
1320
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 140
14
Thermal Expansion, µm/m-K 24
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 8.4
9.1
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1170
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 20
45
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 130
160
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 24 to 26
21
Strength to Weight: Bending, points 31 to 32
20
Thermal Diffusivity, mm2/s 55
3.7
Thermal Shock Resistance, points 11
14

Alloy Composition

Aluminum (Al), % 92.3 to 98.6
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.4
48 to 52
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.8
0 to 1.0
Magnesium (Mg), % 1.4 to 1.8
0
Manganese (Mn), % 0 to 0.6
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
42.9 to 51
Niobium (Nb), % 0
1.0 to 1.8
Nitrogen (N), % 0
0 to 0.16
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 3.3
0
Residuals, % 0 to 0.15
0