MakeItFrom.com
Menu (ESC)

705.0 Aluminum vs. CC331G Bronze

705.0 aluminum belongs to the aluminum alloys classification, while CC331G bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 705.0 aluminum and the bottom bar is CC331G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 62 to 65
140
Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 8.4 to 10
20
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Tensile Strength: Ultimate (UTS), MPa 240 to 260
620
Tensile Strength: Yield (Proof), MPa 130
240

Thermal Properties

Latent Heat of Fusion, J/g 390
230
Maximum Temperature: Mechanical, °C 180
220
Melting Completion (Liquidus), °C 640
1060
Melting Onset (Solidus), °C 610
1000
Specific Heat Capacity, J/kg-K 890
440
Thermal Conductivity, W/m-K 140
61
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
13
Electrical Conductivity: Equal Weight (Specific), % IACS 110
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.8
8.3
Embodied Carbon, kg CO2/kg material 8.4
3.2
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1170
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 20
97
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 130
250
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 49
19
Strength to Weight: Axial, points 24 to 26
21
Strength to Weight: Bending, points 31 to 32
19
Thermal Diffusivity, mm2/s 55
17
Thermal Shock Resistance, points 11
22

Alloy Composition

Aluminum (Al), % 92.3 to 98.6
8.5 to 10.5
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0 to 0.2
83 to 86.5
Iron (Fe), % 0 to 0.8
1.5 to 3.5
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 1.4 to 1.8
0 to 0.050
Manganese (Mn), % 0 to 0.6
0 to 1.0
Nickel (Ni), % 0
0 to 1.5
Silicon (Si), % 0 to 0.2
0 to 0.2
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 3.3
0 to 0.5
Residuals, % 0 to 0.15
0