MakeItFrom.com
Menu (ESC)

705.0 Aluminum vs. Nickel 689

705.0 aluminum belongs to the aluminum alloys classification, while nickel 689 belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 705.0 aluminum and the bottom bar is nickel 689.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 62 to 65
350
Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 8.4 to 10
23
Fatigue Strength, MPa 63 to 98
420
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 240 to 260
1250
Tensile Strength: Yield (Proof), MPa 130
690

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 180
990
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 610
1390
Specific Heat Capacity, J/kg-K 890
450
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.8
8.5
Embodied Carbon, kg CO2/kg material 8.4
11
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 20
240
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 130
1170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 24 to 26
41
Strength to Weight: Bending, points 31 to 32
30
Thermal Shock Resistance, points 11
35

Alloy Composition

Aluminum (Al), % 92.3 to 98.6
0.75 to 1.3
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.1 to 0.2
Chromium (Cr), % 0 to 0.4
18 to 20
Cobalt (Co), % 0
9.0 to 11
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.8
0 to 5.0
Magnesium (Mg), % 1.4 to 1.8
0
Manganese (Mn), % 0 to 0.6
0 to 0.5
Molybdenum (Mo), % 0
9.0 to 10.5
Nickel (Ni), % 0
48.3 to 60.9
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
2.3 to 2.8
Zinc (Zn), % 0 to 3.3
0
Residuals, % 0 to 0.15
0