MakeItFrom.com
Menu (ESC)

705.0 Aluminum vs. Nickel 80A

705.0 aluminum belongs to the aluminum alloys classification, while nickel 80A belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 705.0 aluminum and the bottom bar is nickel 80A.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 8.4 to 10
22
Fatigue Strength, MPa 63 to 98
430
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 240 to 260
1040
Tensile Strength: Yield (Proof), MPa 130
710

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 640
1360
Melting Onset (Solidus), °C 610
1310
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 140
11
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.8
8.3
Embodied Carbon, kg CO2/kg material 8.4
9.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1170
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 20
210
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 130
1300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 24 to 26
35
Strength to Weight: Bending, points 31 to 32
27
Thermal Diffusivity, mm2/s 55
2.9
Thermal Shock Resistance, points 11
31

Alloy Composition

Aluminum (Al), % 92.3 to 98.6
0.5 to 1.8
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.4
18 to 21
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.8
0 to 3.0
Magnesium (Mg), % 1.4 to 1.8
0
Manganese (Mn), % 0 to 0.6
0 to 1.0
Nickel (Ni), % 0
69.4 to 79.7
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
1.8 to 2.7
Zinc (Zn), % 0 to 3.3
0
Residuals, % 0 to 0.15
0