MakeItFrom.com
Menu (ESC)

705.0 Aluminum vs. N08366 Stainless Steel

705.0 aluminum belongs to the aluminum alloys classification, while N08366 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 705.0 aluminum and the bottom bar is N08366 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 62 to 65
180
Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 8.4 to 10
34
Fatigue Strength, MPa 63 to 98
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 240 to 260
590
Tensile Strength: Yield (Proof), MPa 130
240

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 610
1410
Specific Heat Capacity, J/kg-K 890
460
Thermal Conductivity, W/m-K 140
13
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 2.8
8.1
Embodied Carbon, kg CO2/kg material 8.4
6.2
Embodied Energy, MJ/kg 150
84
Embodied Water, L/kg 1170
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 20
160
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 130
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 24 to 26
20
Strength to Weight: Bending, points 31 to 32
19
Thermal Diffusivity, mm2/s 55
3.4
Thermal Shock Resistance, points 11
13

Alloy Composition

Aluminum (Al), % 92.3 to 98.6
0
Carbon (C), % 0
0 to 0.035
Chromium (Cr), % 0 to 0.4
20 to 22
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.8
42.4 to 50.5
Magnesium (Mg), % 1.4 to 1.8
0
Manganese (Mn), % 0 to 0.6
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
23.5 to 25.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 3.3
0
Residuals, % 0 to 0.15
0