MakeItFrom.com
Menu (ESC)

707.0 Aluminum vs. A384.0 Aluminum

Both 707.0 aluminum and A384.0 aluminum are aluminum alloys. They have 84% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 707.0 aluminum and the bottom bar is A384.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
74
Elongation at Break, % 1.7 to 3.4
2.5
Fatigue Strength, MPa 75 to 140
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Tensile Strength: Ultimate (UTS), MPa 270 to 300
330
Tensile Strength: Yield (Proof), MPa 170 to 250
170

Thermal Properties

Latent Heat of Fusion, J/g 380
550
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 630
610
Melting Onset (Solidus), °C 600
510
Specific Heat Capacity, J/kg-K 880
880
Thermal Conductivity, W/m-K 150
96
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
23
Electrical Conductivity: Equal Weight (Specific), % IACS 110
73

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.9
2.8
Embodied Carbon, kg CO2/kg material 8.3
7.5
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1140
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3 to 8.6
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
180
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
50
Strength to Weight: Axial, points 26 to 29
32
Strength to Weight: Bending, points 32 to 34
38
Thermal Diffusivity, mm2/s 58
39
Thermal Shock Resistance, points 12 to 13
15

Alloy Composition

Aluminum (Al), % 90.5 to 93.6
79.3 to 86.5
Chromium (Cr), % 0.2 to 0.4
0
Copper (Cu), % 0 to 0.2
3.0 to 4.5
Iron (Fe), % 0 to 0.8
0 to 1.3
Magnesium (Mg), % 1.8 to 2.4
0 to 0.1
Manganese (Mn), % 0.4 to 0.6
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0 to 0.2
10.5 to 12
Tin (Sn), % 0
0 to 0.35
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 4.0 to 4.5
0 to 1.0
Residuals, % 0
0 to 0.5