MakeItFrom.com
Menu (ESC)

707.0 Aluminum vs. AISI 334 Stainless Steel

707.0 aluminum belongs to the aluminum alloys classification, while AISI 334 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 707.0 aluminum and the bottom bar is AISI 334 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.7 to 3.4
34
Fatigue Strength, MPa 75 to 140
150
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 270 to 300
540
Tensile Strength: Yield (Proof), MPa 170 to 250
190

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 630
1410
Melting Onset (Solidus), °C 600
1370
Specific Heat Capacity, J/kg-K 880
480
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
22
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.3
4.1
Embodied Energy, MJ/kg 150
59
Embodied Water, L/kg 1140
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3 to 8.6
140
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
96
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 26 to 29
19
Strength to Weight: Bending, points 32 to 34
19
Thermal Shock Resistance, points 12 to 13
12

Alloy Composition

Aluminum (Al), % 90.5 to 93.6
0.15 to 0.6
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.2 to 0.4
18 to 20
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.8
55.7 to 62.7
Magnesium (Mg), % 1.8 to 2.4
0
Manganese (Mn), % 0.4 to 0.6
0 to 1.0
Nickel (Ni), % 0
19 to 21
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0.15 to 0.6
Zinc (Zn), % 4.0 to 4.5
0
Residuals, % 0 to 0.15
0