MakeItFrom.com
Menu (ESC)

707.0 Aluminum vs. ASTM A369 Grade FP21

707.0 aluminum belongs to the aluminum alloys classification, while ASTM A369 grade FP21 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 707.0 aluminum and the bottom bar is ASTM A369 grade FP21.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 1.7 to 3.4
20
Fatigue Strength, MPa 75 to 140
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 270 to 300
470
Tensile Strength: Yield (Proof), MPa 170 to 250
240

Thermal Properties

Latent Heat of Fusion, J/g 380
260
Maximum Temperature: Mechanical, °C 180
470
Melting Completion (Liquidus), °C 630
1470
Melting Onset (Solidus), °C 600
1430
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
41
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.0
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.8
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1140
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3 to 8.6
80
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
150
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 26 to 29
17
Strength to Weight: Bending, points 32 to 34
17
Thermal Diffusivity, mm2/s 58
11
Thermal Shock Resistance, points 12 to 13
14

Alloy Composition

Aluminum (Al), % 90.5 to 93.6
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0.2 to 0.4
2.7 to 3.4
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.8
94.3 to 96.2
Magnesium (Mg), % 1.8 to 2.4
0
Manganese (Mn), % 0.4 to 0.6
0.3 to 0.6
Molybdenum (Mo), % 0
0.8 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 4.0 to 4.5
0
Residuals, % 0 to 0.15
0