MakeItFrom.com
Menu (ESC)

707.0 Aluminum vs. SAE-AISI 1144 Steel

707.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1144 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 707.0 aluminum and the bottom bar is SAE-AISI 1144 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 1.7 to 3.4
11 to 17
Fatigue Strength, MPa 75 to 140
280 to 430
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 270 to 300
750 to 840
Tensile Strength: Yield (Proof), MPa 170 to 250
420 to 690

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 600
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
51
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.9
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1140
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3 to 8.6
91 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
480 to 1290
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 26 to 29
27 to 30
Strength to Weight: Bending, points 32 to 34
23 to 25
Thermal Diffusivity, mm2/s 58
14
Thermal Shock Resistance, points 12 to 13
22 to 24

Alloy Composition

Aluminum (Al), % 90.5 to 93.6
0
Carbon (C), % 0
0.4 to 0.48
Chromium (Cr), % 0.2 to 0.4
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.8
97.5 to 98
Magnesium (Mg), % 1.8 to 2.4
0
Manganese (Mn), % 0.4 to 0.6
1.4 to 1.7
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0
Sulfur (S), % 0
0.24 to 0.33
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 4.0 to 4.5
0
Residuals, % 0 to 0.15
0