MakeItFrom.com
Menu (ESC)

707.0 Aluminum vs. C61800 Bronze

707.0 aluminum belongs to the aluminum alloys classification, while C61800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 707.0 aluminum and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 1.7 to 3.4
26
Fatigue Strength, MPa 75 to 140
190
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Tensile Strength: Ultimate (UTS), MPa 270 to 300
740
Tensile Strength: Yield (Proof), MPa 170 to 250
310

Thermal Properties

Latent Heat of Fusion, J/g 380
230
Maximum Temperature: Mechanical, °C 180
220
Melting Completion (Liquidus), °C 630
1050
Melting Onset (Solidus), °C 600
1040
Specific Heat Capacity, J/kg-K 880
440
Thermal Conductivity, W/m-K 150
64
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
13
Electrical Conductivity: Equal Weight (Specific), % IACS 110
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.9
8.3
Embodied Carbon, kg CO2/kg material 8.3
3.1
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1140
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3 to 8.6
150
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
420
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 47
19
Strength to Weight: Axial, points 26 to 29
25
Strength to Weight: Bending, points 32 to 34
22
Thermal Diffusivity, mm2/s 58
18
Thermal Shock Resistance, points 12 to 13
26

Alloy Composition

Aluminum (Al), % 90.5 to 93.6
8.5 to 11
Chromium (Cr), % 0.2 to 0.4
0
Copper (Cu), % 0 to 0.2
86.9 to 91
Iron (Fe), % 0 to 0.8
0.5 to 1.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 1.8 to 2.4
0
Manganese (Mn), % 0.4 to 0.6
0
Silicon (Si), % 0 to 0.2
0 to 0.1
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 4.0 to 4.5
0 to 0.020
Residuals, % 0
0 to 0.5