MakeItFrom.com
Menu (ESC)

707.0 Aluminum vs. C69700 Brass

707.0 aluminum belongs to the aluminum alloys classification, while C69700 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 707.0 aluminum and the bottom bar is C69700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 1.7 to 3.4
25
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 270 to 300
470
Tensile Strength: Yield (Proof), MPa 170 to 250
230

Thermal Properties

Latent Heat of Fusion, J/g 380
240
Maximum Temperature: Mechanical, °C 180
160
Melting Completion (Liquidus), °C 630
930
Melting Onset (Solidus), °C 600
880
Specific Heat Capacity, J/kg-K 880
400
Thermal Conductivity, W/m-K 150
43
Thermal Expansion, µm/m-K 24
19

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.9
8.3
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3 to 8.6
99
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
250
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 47
19
Strength to Weight: Axial, points 26 to 29
16
Strength to Weight: Bending, points 32 to 34
16
Thermal Diffusivity, mm2/s 58
13
Thermal Shock Resistance, points 12 to 13
16

Alloy Composition

Aluminum (Al), % 90.5 to 93.6
0
Chromium (Cr), % 0.2 to 0.4
0
Copper (Cu), % 0 to 0.2
75 to 80
Iron (Fe), % 0 to 0.8
0 to 0.2
Lead (Pb), % 0
0.5 to 1.5
Magnesium (Mg), % 1.8 to 2.4
0
Manganese (Mn), % 0.4 to 0.6
0 to 0.4
Silicon (Si), % 0 to 0.2
2.5 to 3.5
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 4.0 to 4.5
13.9 to 22
Residuals, % 0
0 to 0.5