MakeItFrom.com
Menu (ESC)

707.0 Aluminum vs. C99700 Brass

707.0 aluminum belongs to the aluminum alloys classification, while C99700 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 707.0 aluminum and the bottom bar is C99700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 1.7 to 3.4
25
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
46
Tensile Strength: Ultimate (UTS), MPa 270 to 300
380
Tensile Strength: Yield (Proof), MPa 170 to 250
170

Thermal Properties

Latent Heat of Fusion, J/g 380
200
Maximum Temperature: Mechanical, °C 180
160
Melting Completion (Liquidus), °C 630
900
Melting Onset (Solidus), °C 600
880
Specific Heat Capacity, J/kg-K 880
410
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.9
8.1
Embodied Carbon, kg CO2/kg material 8.3
3.3
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1140
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3 to 8.6
78
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
120
Stiffness to Weight: Axial, points 13
8.3
Stiffness to Weight: Bending, points 47
20
Strength to Weight: Axial, points 26 to 29
13
Strength to Weight: Bending, points 32 to 34
14
Thermal Shock Resistance, points 12 to 13
11

Alloy Composition

Aluminum (Al), % 90.5 to 93.6
0.5 to 3.0
Chromium (Cr), % 0.2 to 0.4
0
Copper (Cu), % 0 to 0.2
54 to 65.5
Iron (Fe), % 0 to 0.8
0 to 1.0
Lead (Pb), % 0
0 to 2.0
Magnesium (Mg), % 1.8 to 2.4
0
Manganese (Mn), % 0.4 to 0.6
11 to 15
Nickel (Ni), % 0
4.0 to 6.0
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0
0 to 1.0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 4.0 to 4.5
19 to 25
Residuals, % 0
0 to 0.3