MakeItFrom.com
Menu (ESC)

707.0 Aluminum vs. N06200 Nickel

707.0 aluminum belongs to the aluminum alloys classification, while N06200 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 707.0 aluminum and the bottom bar is N06200 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
220
Elongation at Break, % 1.7 to 3.4
51
Fatigue Strength, MPa 75 to 140
290
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
84
Tensile Strength: Ultimate (UTS), MPa 270 to 300
780
Tensile Strength: Yield (Proof), MPa 170 to 250
320

Thermal Properties

Latent Heat of Fusion, J/g 380
330
Maximum Temperature: Mechanical, °C 180
990
Melting Completion (Liquidus), °C 630
1500
Melting Onset (Solidus), °C 600
1450
Specific Heat Capacity, J/kg-K 880
430
Thermal Conductivity, W/m-K 150
9.1
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
65
Density, g/cm3 2.9
8.7
Embodied Carbon, kg CO2/kg material 8.3
12
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3 to 8.6
320
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 26 to 29
25
Strength to Weight: Bending, points 32 to 34
22
Thermal Diffusivity, mm2/s 58
2.4
Thermal Shock Resistance, points 12 to 13
21

Alloy Composition

Aluminum (Al), % 90.5 to 93.6
0 to 0.5
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0.2 to 0.4
22 to 24
Cobalt (Co), % 0
0 to 2.0
Copper (Cu), % 0 to 0.2
1.3 to 1.9
Iron (Fe), % 0 to 0.8
0 to 3.0
Magnesium (Mg), % 1.8 to 2.4
0
Manganese (Mn), % 0.4 to 0.6
0 to 0.010
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0
51 to 61.7
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0 to 0.080
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 4.0 to 4.5
0
Residuals, % 0 to 0.15
0