MakeItFrom.com
Menu (ESC)

707.0 Aluminum vs. S13800 Stainless Steel

707.0 aluminum belongs to the aluminum alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 707.0 aluminum and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.7 to 3.4
11 to 18
Fatigue Strength, MPa 75 to 140
410 to 870
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 270 to 300
980 to 1730
Tensile Strength: Yield (Proof), MPa 170 to 250
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 180
810
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 600
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
16
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.3
3.4
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1140
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3 to 8.6
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
1090 to 5490
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 26 to 29
35 to 61
Strength to Weight: Bending, points 32 to 34
28 to 41
Thermal Diffusivity, mm2/s 58
4.3
Thermal Shock Resistance, points 12 to 13
33 to 58

Alloy Composition

Aluminum (Al), % 90.5 to 93.6
0.9 to 1.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.2 to 0.4
12.3 to 13.2
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.8
73.6 to 77.3
Magnesium (Mg), % 1.8 to 2.4
0
Manganese (Mn), % 0.4 to 0.6
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.2
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 4.0 to 4.5
0
Residuals, % 0 to 0.15
0