MakeItFrom.com
Menu (ESC)

707.0 Aluminum vs. S20431 Stainless Steel

707.0 aluminum belongs to the aluminum alloys classification, while S20431 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 707.0 aluminum and the bottom bar is S20431 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.7 to 3.4
46
Fatigue Strength, MPa 75 to 140
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 270 to 300
710
Tensile Strength: Yield (Proof), MPa 170 to 250
350

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 180
890
Melting Completion (Liquidus), °C 630
1400
Melting Onset (Solidus), °C 600
1360
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.5
Embodied Energy, MJ/kg 150
36
Embodied Water, L/kg 1140
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3 to 8.6
270
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 26 to 29
25
Strength to Weight: Bending, points 32 to 34
23
Thermal Diffusivity, mm2/s 58
4.0
Thermal Shock Resistance, points 12 to 13
15

Alloy Composition

Aluminum (Al), % 90.5 to 93.6
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0.2 to 0.4
17 to 18
Copper (Cu), % 0 to 0.2
1.5 to 3.5
Iron (Fe), % 0 to 0.8
66.1 to 74.4
Magnesium (Mg), % 1.8 to 2.4
0
Manganese (Mn), % 0.4 to 0.6
5.0 to 7.0
Nickel (Ni), % 0
2.0 to 4.0
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 4.0 to 4.5
0
Residuals, % 0 to 0.15
0