MakeItFrom.com
Menu (ESC)

7075 Aluminum vs. EN 1.4865 Stainless Steel

7075 aluminum belongs to the aluminum alloys classification, while EN 1.4865 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7075 aluminum and the bottom bar is EN 1.4865 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.8 to 12
6.8
Fatigue Strength, MPa 110 to 190
120
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 240 to 590
470
Tensile Strength: Yield (Proof), MPa 120 to 510
250

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 200
1020
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 480
1330
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 98
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
33
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.3
5.8
Embodied Energy, MJ/kg 150
81
Embodied Water, L/kg 1120
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 44
27
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 1870
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 22 to 54
16
Strength to Weight: Bending, points 28 to 52
17
Thermal Diffusivity, mm2/s 50
3.1
Thermal Shock Resistance, points 10 to 25
11

Alloy Composition

Aluminum (Al), % 86.9 to 91.4
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0.18 to 0.28
18 to 21
Copper (Cu), % 1.2 to 2.0
0
Iron (Fe), % 0 to 0.5
34.4 to 44.7
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.3
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
36 to 39
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 5.1 to 6.1
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0