MakeItFrom.com
Menu (ESC)

7076 Aluminum vs. ASTM A182 Grade F36

7076 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F36 belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7076 aluminum and the bottom bar is ASTM A182 grade F36.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
220
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 6.2
17
Fatigue Strength, MPa 170
330
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 310
440
Tensile Strength: Ultimate (UTS), MPa 530
710
Tensile Strength: Yield (Proof), MPa 460
490

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 460
1420
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 140
39
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.4
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.7
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1110
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1510
650
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 49
25
Strength to Weight: Bending, points 48
22
Thermal Diffusivity, mm2/s 54
10
Thermal Shock Resistance, points 23
21

Alloy Composition

Aluminum (Al), % 86.9 to 91.2
0 to 0.050
Carbon (C), % 0
0.1 to 0.17
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0.3 to 1.0
0.5 to 0.8
Iron (Fe), % 0 to 0.6
95 to 97.1
Magnesium (Mg), % 1.2 to 2.0
0
Manganese (Mn), % 0.3 to 0.8
0.8 to 1.2
Molybdenum (Mo), % 0
0.25 to 0.5
Nickel (Ni), % 0
1.0 to 1.3
Niobium (Nb), % 0
0.015 to 0.045
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0.25 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 7.0 to 8.0
0
Residuals, % 0 to 0.15
0