MakeItFrom.com
Menu (ESC)

710.0 Aluminum vs. 2618 Aluminum

Both 710.0 aluminum and 2618 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 710.0 aluminum and the bottom bar is 2618 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
120
Elastic (Young's, Tensile) Modulus, GPa 70
71
Elongation at Break, % 2.2 to 3.6
5.8
Fatigue Strength, MPa 55 to 110
110
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 180
260
Tensile Strength: Ultimate (UTS), MPa 240 to 250
420
Tensile Strength: Yield (Proof), MPa 160
350

Thermal Properties

Latent Heat of Fusion, J/g 380
390
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 610
550
Specific Heat Capacity, J/kg-K 870
880
Thermal Conductivity, W/m-K 140
160
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
37
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 3.0
2.9
Embodied Carbon, kg CO2/kg material 8.0
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1130
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.9 to 7.9
23
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 190
850
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
47
Strength to Weight: Axial, points 23
40
Strength to Weight: Bending, points 29
42
Thermal Diffusivity, mm2/s 53
62
Thermal Shock Resistance, points 10 to 11
19

Alloy Composition

Aluminum (Al), % 90.5 to 93.1
92.4 to 94.9
Copper (Cu), % 0.35 to 0.65
1.9 to 2.7
Iron (Fe), % 0 to 0.5
0.9 to 1.3
Magnesium (Mg), % 0.6 to 0.8
1.3 to 1.8
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 0
0.9 to 1.2
Silicon (Si), % 0 to 0.15
0.1 to 0.25
Titanium (Ti), % 0 to 0.25
0.040 to 0.1
Zinc (Zn), % 6.0 to 7.0
0 to 0.1
Residuals, % 0
0 to 0.15