MakeItFrom.com
Menu (ESC)

710.0 Aluminum vs. AWS E80C-B6

710.0 aluminum belongs to the aluminum alloys classification, while AWS E80C-B6 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 710.0 aluminum and the bottom bar is AWS E80C-B6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 2.2 to 3.6
19
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 240 to 250
630
Tensile Strength: Yield (Proof), MPa 160
530

Thermal Properties

Latent Heat of Fusion, J/g 380
260
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 610
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140
39
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.7
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.8
Embodied Energy, MJ/kg 150
25
Embodied Water, L/kg 1130
71

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.9 to 7.9
120
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 190
730
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 23
22
Strength to Weight: Bending, points 29
21
Thermal Diffusivity, mm2/s 53
11
Thermal Shock Resistance, points 10 to 11
18

Alloy Composition

Aluminum (Al), % 90.5 to 93.1
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
4.5 to 6.0
Copper (Cu), % 0.35 to 0.65
0 to 0.35
Iron (Fe), % 0 to 0.5
90.1 to 94.4
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.050
0.4 to 1.0
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0.25 to 0.6
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 6.0 to 7.0
0
Residuals, % 0
0 to 0.5