MakeItFrom.com
Menu (ESC)

710.0 Aluminum vs. EN 1.0451 Steel

710.0 aluminum belongs to the aluminum alloys classification, while EN 1.0451 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 710.0 aluminum and the bottom bar is EN 1.0451 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
120
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 2.2 to 3.6
27
Fatigue Strength, MPa 55 to 110
180
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 180
270
Tensile Strength: Ultimate (UTS), MPa 240 to 250
420
Tensile Strength: Yield (Proof), MPa 160
240

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140
49
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.1
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.5
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1130
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.9 to 7.9
98
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 190
150
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 23
15
Strength to Weight: Bending, points 29
16
Thermal Diffusivity, mm2/s 53
13
Thermal Shock Resistance, points 10 to 11
13

Alloy Composition

Aluminum (Al), % 90.5 to 93.1
0.020 to 0.060
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0.35 to 0.65
0 to 0.3
Iron (Fe), % 0 to 0.5
97.2 to 99.58
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.050
0.4 to 1.2
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.35
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0 to 0.040
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 6.0 to 7.0
0
Residuals, % 0 to 0.15
0