MakeItFrom.com
Menu (ESC)

710.0 Aluminum vs. EN 1.4658 Stainless Steel

710.0 aluminum belongs to the aluminum alloys classification, while EN 1.4658 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 710.0 aluminum and the bottom bar is EN 1.4658 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
260
Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 2.2 to 3.6
28
Fatigue Strength, MPa 55 to 110
530
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 26
81
Shear Strength, MPa 180
580
Tensile Strength: Ultimate (UTS), MPa 240 to 250
900
Tensile Strength: Yield (Proof), MPa 160
730

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 610
1400
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140
16
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
4.5
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1130
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.9 to 7.9
240
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 190
1280
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 23
32
Strength to Weight: Bending, points 29
26
Thermal Diffusivity, mm2/s 53
4.3
Thermal Shock Resistance, points 10 to 11
24

Alloy Composition

Aluminum (Al), % 90.5 to 93.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
26 to 29
Cobalt (Co), % 0
0.5 to 2.0
Copper (Cu), % 0.35 to 0.65
0 to 1.0
Iron (Fe), % 0 to 0.5
50.9 to 63.7
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.050
0 to 1.5
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
5.5 to 9.5
Nitrogen (N), % 0
0.3 to 0.5
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 6.0 to 7.0
0
Residuals, % 0 to 0.15
0