MakeItFrom.com
Menu (ESC)

710.0 Aluminum vs. EN 1.4823 Stainless Steel

710.0 aluminum belongs to the aluminum alloys classification, while EN 1.4823 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 710.0 aluminum and the bottom bar is EN 1.4823 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.2 to 3.6
3.4
Fatigue Strength, MPa 55 to 110
130
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 240 to 250
620
Tensile Strength: Yield (Proof), MPa 160
290

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1400
Melting Onset (Solidus), °C 610
1360
Specific Heat Capacity, J/kg-K 870
490
Thermal Conductivity, W/m-K 140
17
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
16
Density, g/cm3 3.0
7.6
Embodied Carbon, kg CO2/kg material 8.0
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1130
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.9 to 7.9
17
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 190
200
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
26
Strength to Weight: Axial, points 23
23
Strength to Weight: Bending, points 29
21
Thermal Diffusivity, mm2/s 53
4.5
Thermal Shock Resistance, points 10 to 11
17

Alloy Composition

Aluminum (Al), % 90.5 to 93.1
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 0.35 to 0.65
0
Iron (Fe), % 0 to 0.5
60.9 to 70.7
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.050
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
3.0 to 6.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 6.0 to 7.0
0
Residuals, % 0 to 0.15
0