MakeItFrom.com
Menu (ESC)

710.0 Aluminum vs. EN 1.4849 Stainless Steel

710.0 aluminum belongs to the aluminum alloys classification, while EN 1.4849 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 710.0 aluminum and the bottom bar is EN 1.4849 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
140
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 2.2 to 3.6
4.5
Fatigue Strength, MPa 55 to 110
120
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 240 to 250
480
Tensile Strength: Yield (Proof), MPa 160
250

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 170
1020
Melting Completion (Liquidus), °C 650
1390
Melting Onset (Solidus), °C 610
1340
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 24
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
42
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.0
7.1
Embodied Energy, MJ/kg 150
100
Embodied Water, L/kg 1130
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.9 to 7.9
18
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 190
160
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 23
17
Strength to Weight: Bending, points 29
17
Thermal Diffusivity, mm2/s 53
3.2
Thermal Shock Resistance, points 10 to 11
11

Alloy Composition

Aluminum (Al), % 90.5 to 93.1
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 0.35 to 0.65
0
Iron (Fe), % 0 to 0.5
32.6 to 43.5
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.050
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
36 to 39
Niobium (Nb), % 0
1.2 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 6.0 to 7.0
0
Residuals, % 0 to 0.15
0