MakeItFrom.com
Menu (ESC)

710.0 Aluminum vs. EN 1.8901 Steel

710.0 aluminum belongs to the aluminum alloys classification, while EN 1.8901 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 710.0 aluminum and the bottom bar is EN 1.8901 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
190
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 2.2 to 3.6
19
Fatigue Strength, MPa 55 to 110
340
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 180
390
Tensile Strength: Ultimate (UTS), MPa 240 to 250
630
Tensile Strength: Yield (Proof), MPa 160
490

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140
44
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1130
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.9 to 7.9
110
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 190
640
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 23
22
Strength to Weight: Bending, points 29
21
Thermal Diffusivity, mm2/s 53
12
Thermal Shock Resistance, points 10 to 11
18

Alloy Composition

Aluminum (Al), % 90.5 to 93.1
0 to 0.015
Carbon (C), % 0
0 to 0.22
Chromium (Cr), % 0
0 to 0.35
Copper (Cu), % 0.35 to 0.65
0 to 0.6
Iron (Fe), % 0 to 0.5
95 to 99.05
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.050
1.0 to 1.8
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 0
0 to 0.85
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.027
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0 to 0.65
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0 to 0.060
Vanadium (V), % 0
0 to 0.22
Zinc (Zn), % 6.0 to 7.0
0
Residuals, % 0 to 0.15
0