MakeItFrom.com
Menu (ESC)

710.0 Aluminum vs. EN AC-46200 Aluminum

Both 710.0 aluminum and EN AC-46200 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 710.0 aluminum and the bottom bar is EN AC-46200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
82
Elastic (Young's, Tensile) Modulus, GPa 70
73
Elongation at Break, % 2.2 to 3.6
1.1
Fatigue Strength, MPa 55 to 110
87
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 240 to 250
210
Tensile Strength: Yield (Proof), MPa 160
130

Thermal Properties

Latent Heat of Fusion, J/g 380
510
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
620
Melting Onset (Solidus), °C 610
540
Specific Heat Capacity, J/kg-K 870
880
Thermal Conductivity, W/m-K 140
110
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
28
Electrical Conductivity: Equal Weight (Specific), % IACS 110
88

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 3.0
2.8
Embodied Carbon, kg CO2/kg material 8.0
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1130
1060

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.9 to 7.9
2.0
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 190
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 23
21
Strength to Weight: Bending, points 29
28
Thermal Diffusivity, mm2/s 53
44
Thermal Shock Resistance, points 10 to 11
9.5

Alloy Composition

Aluminum (Al), % 90.5 to 93.1
82.6 to 90.3
Copper (Cu), % 0.35 to 0.65
2.0 to 3.5
Iron (Fe), % 0 to 0.5
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0.6 to 0.8
0.050 to 0.55
Manganese (Mn), % 0 to 0.050
0.15 to 0.65
Nickel (Ni), % 0
0 to 0.35
Silicon (Si), % 0 to 0.15
7.5 to 9.5
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.25
0 to 0.25
Zinc (Zn), % 6.0 to 7.0
0 to 1.2
Residuals, % 0
0 to 0.25