MakeItFrom.com
Menu (ESC)

710.0 Aluminum vs. C19200 Copper

710.0 aluminum belongs to the aluminum alloys classification, while C19200 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 710.0 aluminum and the bottom bar is C19200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 2.2 to 3.6
2.0 to 35
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 26
44
Shear Strength, MPa 180
190 to 300
Tensile Strength: Ultimate (UTS), MPa 240 to 250
280 to 530
Tensile Strength: Yield (Proof), MPa 160
98 to 510

Thermal Properties

Latent Heat of Fusion, J/g 380
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 650
1080
Melting Onset (Solidus), °C 610
1080
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 140
240
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
58 to 74
Electrical Conductivity: Equal Weight (Specific), % IACS 110
58 to 75

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.0
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.9 to 7.9
10 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 190
42 to 1120
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 23
8.8 to 17
Strength to Weight: Bending, points 29
11 to 16
Thermal Diffusivity, mm2/s 53
69
Thermal Shock Resistance, points 10 to 11
10 to 19

Alloy Composition

Aluminum (Al), % 90.5 to 93.1
0
Copper (Cu), % 0.35 to 0.65
98.5 to 99.19
Iron (Fe), % 0 to 0.5
0.8 to 1.2
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.050
0
Phosphorus (P), % 0
0.010 to 0.040
Silicon (Si), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 6.0 to 7.0
0 to 0.2
Residuals, % 0
0 to 0.2