MakeItFrom.com
Menu (ESC)

710.0 Aluminum vs. C71640 Copper-nickel

710.0 aluminum belongs to the aluminum alloys classification, while C71640 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 710.0 aluminum and the bottom bar is C71640 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
140
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
52
Tensile Strength: Ultimate (UTS), MPa 240 to 250
490 to 630
Tensile Strength: Yield (Proof), MPa 160
190 to 460

Thermal Properties

Latent Heat of Fusion, J/g 380
240
Maximum Temperature: Mechanical, °C 170
260
Melting Completion (Liquidus), °C 650
1180
Melting Onset (Solidus), °C 610
1120
Specific Heat Capacity, J/kg-K 870
410
Thermal Conductivity, W/m-K 140
29
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
40
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.0
5.0
Embodied Energy, MJ/kg 150
73
Embodied Water, L/kg 1130
280

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 190
130 to 750
Stiffness to Weight: Axial, points 13
8.7
Stiffness to Weight: Bending, points 46
20
Strength to Weight: Axial, points 23
15 to 20
Strength to Weight: Bending, points 29
16 to 18
Thermal Diffusivity, mm2/s 53
8.2
Thermal Shock Resistance, points 10 to 11
16 to 21

Alloy Composition

Aluminum (Al), % 90.5 to 93.1
0
Copper (Cu), % 0.35 to 0.65
61.7 to 67.8
Iron (Fe), % 0 to 0.5
1.7 to 2.3
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.050
1.5 to 2.5
Nickel (Ni), % 0
29 to 32
Silicon (Si), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 6.0 to 7.0
0 to 1.0
Residuals, % 0
0 to 0.5