MakeItFrom.com
Menu (ESC)

710.0 Aluminum vs. C84000 Brass

710.0 aluminum belongs to the aluminum alloys classification, while C84000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 710.0 aluminum and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
65
Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 2.2 to 3.6
27
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
42
Tensile Strength: Ultimate (UTS), MPa 240 to 250
250
Tensile Strength: Yield (Proof), MPa 160
140

Thermal Properties

Latent Heat of Fusion, J/g 380
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
1040
Melting Onset (Solidus), °C 610
940
Specific Heat Capacity, J/kg-K 870
380
Thermal Conductivity, W/m-K 140
72
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
16
Electrical Conductivity: Equal Weight (Specific), % IACS 110
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 3.0
8.6
Embodied Carbon, kg CO2/kg material 8.0
3.0
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1130
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.9 to 7.9
58
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 190
83
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 23
8.2
Strength to Weight: Bending, points 29
10
Thermal Diffusivity, mm2/s 53
22
Thermal Shock Resistance, points 10 to 11
9.0

Alloy Composition

Aluminum (Al), % 90.5 to 93.1
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Copper (Cu), % 0.35 to 0.65
82 to 89
Iron (Fe), % 0 to 0.5
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.050
0 to 0.010
Nickel (Ni), % 0
0.5 to 2.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.15
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
2.0 to 4.0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 6.0 to 7.0
5.0 to 14
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7