MakeItFrom.com
Menu (ESC)

710.0 Aluminum vs. C90500 Gun Metal

710.0 aluminum belongs to the aluminum alloys classification, while C90500 gun metal belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 710.0 aluminum and the bottom bar is C90500 gun metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 2.2 to 3.6
20
Fatigue Strength, MPa 55 to 110
90
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 240 to 250
320
Tensile Strength: Yield (Proof), MPa 160
160

Thermal Properties

Latent Heat of Fusion, J/g 380
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
1000
Melting Onset (Solidus), °C 610
850
Solidification (Pattern Maker's) Shrinkage, % 1.6
1.6
Specific Heat Capacity, J/kg-K 870
370
Thermal Conductivity, W/m-K 140
75
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
11
Electrical Conductivity: Equal Weight (Specific), % IACS 110
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
35
Density, g/cm3 3.0
8.7
Embodied Carbon, kg CO2/kg material 8.0
3.6
Embodied Energy, MJ/kg 150
59
Embodied Water, L/kg 1130
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.9 to 7.9
54
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 190
110
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 23
10
Strength to Weight: Bending, points 29
12
Thermal Diffusivity, mm2/s 53
23
Thermal Shock Resistance, points 10 to 11
12

Alloy Composition

Aluminum (Al), % 90.5 to 93.1
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 0.35 to 0.65
86 to 89
Iron (Fe), % 0 to 0.5
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.15
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 6.0 to 7.0
1.0 to 3.0
Residuals, % 0
0 to 0.3