MakeItFrom.com
Menu (ESC)

710.0 Aluminum vs. C99700 Brass

710.0 aluminum belongs to the aluminum alloys classification, while C99700 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 710.0 aluminum and the bottom bar is C99700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 2.2 to 3.6
25
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 26
46
Tensile Strength: Ultimate (UTS), MPa 240 to 250
380
Tensile Strength: Yield (Proof), MPa 160
170

Thermal Properties

Latent Heat of Fusion, J/g 380
200
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 650
900
Melting Onset (Solidus), °C 610
880
Specific Heat Capacity, J/kg-K 870
410
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.0
3.3
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.9 to 7.9
78
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 190
120
Stiffness to Weight: Axial, points 13
8.3
Stiffness to Weight: Bending, points 46
20
Strength to Weight: Axial, points 23
13
Strength to Weight: Bending, points 29
14
Thermal Shock Resistance, points 10 to 11
11

Alloy Composition

Aluminum (Al), % 90.5 to 93.1
0.5 to 3.0
Copper (Cu), % 0.35 to 0.65
54 to 65.5
Iron (Fe), % 0 to 0.5
0 to 1.0
Lead (Pb), % 0
0 to 2.0
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.050
11 to 15
Nickel (Ni), % 0
4.0 to 6.0
Silicon (Si), % 0 to 0.15
0
Tin (Sn), % 0
0 to 1.0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 6.0 to 7.0
19 to 25
Residuals, % 0
0 to 0.3