MakeItFrom.com
Menu (ESC)

710.0 Aluminum vs. N06200 Nickel

710.0 aluminum belongs to the aluminum alloys classification, while N06200 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 710.0 aluminum and the bottom bar is N06200 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
220
Elongation at Break, % 2.2 to 3.6
51
Fatigue Strength, MPa 55 to 110
290
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
84
Shear Strength, MPa 180
560
Tensile Strength: Ultimate (UTS), MPa 240 to 250
780
Tensile Strength: Yield (Proof), MPa 160
320

Thermal Properties

Latent Heat of Fusion, J/g 380
330
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 650
1500
Melting Onset (Solidus), °C 610
1450
Specific Heat Capacity, J/kg-K 870
430
Thermal Conductivity, W/m-K 140
9.1
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
65
Density, g/cm3 3.0
8.7
Embodied Carbon, kg CO2/kg material 8.0
12
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.9 to 7.9
320
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 190
240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 23
25
Strength to Weight: Bending, points 29
22
Thermal Diffusivity, mm2/s 53
2.4
Thermal Shock Resistance, points 10 to 11
21

Alloy Composition

Aluminum (Al), % 90.5 to 93.1
0 to 0.5
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
22 to 24
Cobalt (Co), % 0
0 to 2.0
Copper (Cu), % 0.35 to 0.65
1.3 to 1.9
Iron (Fe), % 0 to 0.5
0 to 3.0
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.050
0 to 0.010
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0
51 to 61.7
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.080
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 6.0 to 7.0
0
Residuals, % 0 to 0.15
0