MakeItFrom.com
Menu (ESC)

710.0 Aluminum vs. S34565 Stainless Steel

710.0 aluminum belongs to the aluminum alloys classification, while S34565 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 710.0 aluminum and the bottom bar is S34565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
200
Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 2.2 to 3.6
39
Fatigue Strength, MPa 55 to 110
400
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 180
610
Tensile Strength: Ultimate (UTS), MPa 240 to 250
900
Tensile Strength: Yield (Proof), MPa 160
470

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 610
1380
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
5.3
Embodied Energy, MJ/kg 150
73
Embodied Water, L/kg 1130
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.9 to 7.9
300
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 190
540
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 23
32
Strength to Weight: Bending, points 29
26
Thermal Diffusivity, mm2/s 53
3.2
Thermal Shock Resistance, points 10 to 11
22

Alloy Composition

Aluminum (Al), % 90.5 to 93.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 0.35 to 0.65
0
Iron (Fe), % 0 to 0.5
43.2 to 51.6
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.050
5.0 to 7.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
16 to 18
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0.4 to 0.6
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 6.0 to 7.0
0
Residuals, % 0 to 0.15
0