MakeItFrom.com
Menu (ESC)

7108A Aluminum vs. AISI 416 Stainless Steel

7108A aluminum belongs to the aluminum alloys classification, while AISI 416 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108A aluminum and the bottom bar is AISI 416 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 11 to 13
13 to 31
Fatigue Strength, MPa 120 to 130
230 to 340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 210
340 to 480
Tensile Strength: Ultimate (UTS), MPa 350
510 to 800
Tensile Strength: Yield (Proof), MPa 290 to 300
290 to 600

Thermal Properties

Latent Heat of Fusion, J/g 380
270
Maximum Temperature: Mechanical, °C 210
680
Melting Completion (Liquidus), °C 630
1530
Melting Onset (Solidus), °C 520
1480
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 150
30
Thermal Expansion, µm/m-K 24
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.0
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.3
1.9
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1150
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 44
98 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 640
220 to 940
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 33 to 34
18 to 29
Strength to Weight: Bending, points 38
18 to 25
Thermal Diffusivity, mm2/s 59
8.1
Thermal Shock Resistance, points 15 to 16
19 to 30

Alloy Composition

Aluminum (Al), % 91.6 to 94.4
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.040
12 to 14
Copper (Cu), % 0 to 0.050
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
83.2 to 87.9
Magnesium (Mg), % 0.7 to 1.5
0
Manganese (Mn), % 0 to 0.050
0 to 1.3
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Titanium (Ti), % 0 to 0.030
0
Zinc (Zn), % 4.8 to 5.8
0
Zirconium (Zr), % 0.15 to 0.25
0
Residuals, % 0 to 0.15
0