MakeItFrom.com
Menu (ESC)

711.0 Aluminum vs. ASTM A387 Grade 21L Class 1

711.0 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 21L class 1 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 711.0 aluminum and the bottom bar is ASTM A387 grade 21L class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
150
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 7.8
21
Fatigue Strength, MPa 100
160
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
74
Tensile Strength: Ultimate (UTS), MPa 220
500
Tensile Strength: Yield (Proof), MPa 140
230

Thermal Properties

Latent Heat of Fusion, J/g 380
260
Maximum Temperature: Mechanical, °C 170
480
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 610
1430
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 160
41
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.1
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 7.9
1.8
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1120
62

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
84
Resilience: Unit (Modulus of Resilience), kJ/m3 140
140
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 20
18
Strength to Weight: Bending, points 26
18
Thermal Diffusivity, mm2/s 61
11
Thermal Shock Resistance, points 9.3
14

Alloy Composition

Aluminum (Al), % 89.8 to 92.7
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
2.8 to 3.3
Copper (Cu), % 0.35 to 0.65
0
Iron (Fe), % 0.7 to 1.4
94.4 to 96.1
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.050
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 6.0 to 7.0
0
Residuals, % 0 to 0.15
0