MakeItFrom.com
Menu (ESC)

711.0 Aluminum vs. EN 1.0033 Steel

711.0 aluminum belongs to the aluminum alloys classification, while EN 1.0033 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 711.0 aluminum and the bottom bar is EN 1.0033 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
86 to 96
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 7.8
17 to 32
Fatigue Strength, MPa 100
120 to 140
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 220
300 to 330
Tensile Strength: Yield (Proof), MPa 140
150 to 200

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 160
53
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 7.9
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1120
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
48 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 140
63 to 100
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 20
10 to 12
Strength to Weight: Bending, points 26
13 to 14
Thermal Diffusivity, mm2/s 61
14
Thermal Shock Resistance, points 9.3
9.4 to 10

Alloy Composition

Aluminum (Al), % 89.8 to 92.7
0
Carbon (C), % 0
0 to 0.11
Copper (Cu), % 0.35 to 0.65
0
Iron (Fe), % 0.7 to 1.4
98.8 to 100
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.050
0 to 0.7
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.3
0 to 0.35
Sulfur (S), % 0
0 to 0.045
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 6.0 to 7.0
0
Residuals, % 0 to 0.15
0