MakeItFrom.com
Menu (ESC)

711.0 Aluminum vs. SAE-AISI 5140 Steel

711.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI 5140 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 711.0 aluminum and the bottom bar is SAE-AISI 5140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
170 to 290
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 7.8
12 to 29
Fatigue Strength, MPa 100
220 to 570
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 220
560 to 970
Tensile Strength: Yield (Proof), MPa 140
290 to 840

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 160
45
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.1
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 7.9
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1120
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
76 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 140
220 to 1880
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 20
20 to 34
Strength to Weight: Bending, points 26
19 to 28
Thermal Diffusivity, mm2/s 61
12
Thermal Shock Resistance, points 9.3
16 to 29

Alloy Composition

Aluminum (Al), % 89.8 to 92.7
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 0.35 to 0.65
0
Iron (Fe), % 0.7 to 1.4
97.3 to 98.1
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.050
0.7 to 0.9
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.3
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 6.0 to 7.0
0
Residuals, % 0 to 0.15
0