MakeItFrom.com
Menu (ESC)

711.0 Aluminum vs. N06603 Nickel

711.0 aluminum belongs to the aluminum alloys classification, while N06603 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 711.0 aluminum and the bottom bar is N06603 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 7.8
28
Fatigue Strength, MPa 100
230
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 220
740
Tensile Strength: Yield (Proof), MPa 140
340

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 640
1340
Melting Onset (Solidus), °C 610
1300
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 160
11
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 3.0
8.2
Embodied Carbon, kg CO2/kg material 7.9
8.4
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1120
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
170
Resilience: Unit (Modulus of Resilience), kJ/m3 140
300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 26
22
Thermal Diffusivity, mm2/s 61
2.9
Thermal Shock Resistance, points 9.3
20

Alloy Composition

Aluminum (Al), % 89.8 to 92.7
2.4 to 3.0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0.35 to 0.65
0 to 0.5
Iron (Fe), % 0.7 to 1.4
8.0 to 11
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.050
0 to 0.15
Nickel (Ni), % 0
57.7 to 65.6
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0.010 to 0.25
Yttrium (Y), % 0
0.010 to 0.15
Zinc (Zn), % 6.0 to 7.0
0.010 to 0.1
Residuals, % 0 to 0.15
0