MakeItFrom.com
Menu (ESC)

711.0 Aluminum vs. N08028 Stainless Steel

711.0 aluminum belongs to the aluminum alloys classification, while N08028 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 711.0 aluminum and the bottom bar is N08028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
180
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 7.8
45
Fatigue Strength, MPa 100
220
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 220
570
Tensile Strength: Yield (Proof), MPa 140
240

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 610
1370
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 160
12
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 7.9
6.4
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1120
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
210
Resilience: Unit (Modulus of Resilience), kJ/m3 140
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 20
19
Strength to Weight: Bending, points 26
19
Thermal Diffusivity, mm2/s 61
3.2
Thermal Shock Resistance, points 9.3
12

Alloy Composition

Aluminum (Al), % 89.8 to 92.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 0.35 to 0.65
0.6 to 1.4
Iron (Fe), % 0.7 to 1.4
29 to 40.4
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.050
0 to 2.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
30 to 34
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 6.0 to 7.0
0
Residuals, % 0 to 0.15
0