MakeItFrom.com
Menu (ESC)

711.0 Aluminum vs. S32053 Stainless Steel

711.0 aluminum belongs to the aluminum alloys classification, while S32053 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 711.0 aluminum and the bottom bar is S32053 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
190
Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 7.8
46
Fatigue Strength, MPa 100
310
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 220
730
Tensile Strength: Yield (Proof), MPa 140
330

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 610
1400
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 160
13
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 7.9
6.1
Embodied Energy, MJ/kg 150
83
Embodied Water, L/kg 1120
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
270
Resilience: Unit (Modulus of Resilience), kJ/m3 140
270
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 26
22
Thermal Diffusivity, mm2/s 61
3.3
Thermal Shock Resistance, points 9.3
16

Alloy Composition

Aluminum (Al), % 89.8 to 92.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 0.35 to 0.65
0
Iron (Fe), % 0.7 to 1.4
41.7 to 48.8
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 6.0
Nickel (Ni), % 0
24 to 26
Nitrogen (N), % 0
0.17 to 0.22
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 6.0 to 7.0
0
Residuals, % 0 to 0.15
0