MakeItFrom.com
Menu (ESC)

711.0 Aluminum vs. S32906 Stainless Steel

711.0 aluminum belongs to the aluminum alloys classification, while S32906 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 711.0 aluminum and the bottom bar is S32906 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
270
Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 7.8
28
Fatigue Strength, MPa 100
460
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 27
81
Tensile Strength: Ultimate (UTS), MPa 220
850
Tensile Strength: Yield (Proof), MPa 140
620

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 610
1380
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 160
13
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 7.9
3.7
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1120
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
220
Resilience: Unit (Modulus of Resilience), kJ/m3 140
950
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 20
30
Strength to Weight: Bending, points 26
26
Thermal Diffusivity, mm2/s 61
3.6
Thermal Shock Resistance, points 9.3
23

Alloy Composition

Aluminum (Al), % 89.8 to 92.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 0.35 to 0.65
0 to 0.8
Iron (Fe), % 0.7 to 1.4
56.6 to 63.6
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.050
0.8 to 1.5
Molybdenum (Mo), % 0
1.5 to 2.6
Nickel (Ni), % 0
5.8 to 7.5
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 6.0 to 7.0
0
Residuals, % 0 to 0.15
0