MakeItFrom.com
Menu (ESC)

7116 Aluminum vs. ACI-ASTM CD3MWCuN Steel

7116 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CD3MWCuN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7116 aluminum and the bottom bar is ACI-ASTM CD3MWCuN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 7.8
29
Fatigue Strength, MPa 160
370
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 370
790
Tensile Strength: Yield (Proof), MPa 330
500

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 520
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
16
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
22
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.2
4.2
Embodied Energy, MJ/kg 150
58
Embodied Water, L/kg 1150
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
200
Resilience: Unit (Modulus of Resilience), kJ/m3 790
620
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 35
28
Strength to Weight: Bending, points 39
24
Thermal Diffusivity, mm2/s 58
4.2
Thermal Shock Resistance, points 16
22

Alloy Composition

Aluminum (Al), % 91.5 to 94.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0.5 to 1.1
0.5 to 1.0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
56.6 to 65.3
Magnesium (Mg), % 0.8 to 1.4
0
Manganese (Mn), % 0 to 0.050
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
6.5 to 8.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.050
0
Tungsten (W), % 0
0.5 to 1.0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 4.2 to 5.2
0
Residuals, % 0 to 0.15
0