MakeItFrom.com
Menu (ESC)

7116 Aluminum vs. B535.0 Aluminum

Both 7116 aluminum and B535.0 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 7116 aluminum and the bottom bar is B535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
66
Elongation at Break, % 7.8
10
Fatigue Strength, MPa 160
62
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Shear Strength, MPa 220
210
Tensile Strength: Ultimate (UTS), MPa 370
260
Tensile Strength: Yield (Proof), MPa 330
130

Thermal Properties

Latent Heat of Fusion, J/g 380
390
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 520
550
Specific Heat Capacity, J/kg-K 880
910
Thermal Conductivity, W/m-K 150
96
Thermal Expansion, µm/m-K 24
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
24
Electrical Conductivity: Equal Weight (Specific), % IACS 140
82

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.9
2.6
Embodied Carbon, kg CO2/kg material 8.2
9.4
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
22
Resilience: Unit (Modulus of Resilience), kJ/m3 790
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
51
Strength to Weight: Axial, points 35
28
Strength to Weight: Bending, points 39
35
Thermal Diffusivity, mm2/s 58
40
Thermal Shock Resistance, points 16
11

Alloy Composition

Aluminum (Al), % 91.5 to 94.5
91.7 to 93.4
Copper (Cu), % 0.5 to 1.1
0 to 0.1
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
0 to 0.15
Magnesium (Mg), % 0.8 to 1.4
6.5 to 7.5
Manganese (Mn), % 0 to 0.050
0 to 0.050
Silicon (Si), % 0 to 0.15
0 to 0.15
Titanium (Ti), % 0 to 0.050
0.1 to 0.25
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 4.2 to 5.2
0
Residuals, % 0
0 to 0.15