MakeItFrom.com
Menu (ESC)

7116 Aluminum vs. EN 1.4646 Stainless Steel

7116 aluminum belongs to the aluminum alloys classification, while EN 1.4646 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7116 aluminum and the bottom bar is EN 1.4646 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 7.8
34
Fatigue Strength, MPa 160
340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 220
500
Tensile Strength: Ultimate (UTS), MPa 370
750
Tensile Strength: Yield (Proof), MPa 330
430

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 520
1340
Specific Heat Capacity, J/kg-K 880
480
Thermal Expansion, µm/m-K 24
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.2
2.8
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1150
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
220
Resilience: Unit (Modulus of Resilience), kJ/m3 790
460
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 35
27
Strength to Weight: Bending, points 39
24
Thermal Shock Resistance, points 16
16

Alloy Composition

Aluminum (Al), % 91.5 to 94.5
0
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0.5 to 1.1
1.5 to 3.0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
59 to 67.3
Magnesium (Mg), % 0.8 to 1.4
0
Manganese (Mn), % 0 to 0.050
10.5 to 12.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
3.5 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 4.2 to 5.2
0
Residuals, % 0 to 0.15
0