MakeItFrom.com
Menu (ESC)

7116 Aluminum vs. EN 2.4856 Nickel

7116 aluminum belongs to the aluminum alloys classification, while EN 2.4856 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7116 aluminum and the bottom bar is EN 2.4856 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 7.8
28
Fatigue Strength, MPa 160
280
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
79
Shear Strength, MPa 220
570
Tensile Strength: Ultimate (UTS), MPa 370
880
Tensile Strength: Yield (Proof), MPa 330
430

Thermal Properties

Latent Heat of Fusion, J/g 380
330
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 640
1480
Melting Onset (Solidus), °C 520
1430
Specific Heat Capacity, J/kg-K 880
440
Thermal Conductivity, W/m-K 150
10
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 2.9
8.6
Embodied Carbon, kg CO2/kg material 8.2
14
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1150
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
200
Resilience: Unit (Modulus of Resilience), kJ/m3 790
440
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 35
28
Strength to Weight: Bending, points 39
24
Thermal Diffusivity, mm2/s 58
2.7
Thermal Shock Resistance, points 16
29

Alloy Composition

Aluminum (Al), % 91.5 to 94.5
0 to 0.4
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0.5 to 1.1
0 to 0.5
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
0 to 5.0
Magnesium (Mg), % 0.8 to 1.4
0
Manganese (Mn), % 0 to 0.050
0 to 0.5
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
58 to 68.8
Niobium (Nb), % 0
3.2 to 4.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.15
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.050
0 to 0.4
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 4.2 to 5.2
0
Residuals, % 0 to 0.15
0