MakeItFrom.com
Menu (ESC)

7116 Aluminum vs. SAE-AISI 4037 Steel

7116 aluminum belongs to the aluminum alloys classification, while SAE-AISI 4037 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7116 aluminum and the bottom bar is SAE-AISI 4037 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 7.8
23
Fatigue Strength, MPa 160
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 220
340
Tensile Strength: Ultimate (UTS), MPa 370
540
Tensile Strength: Yield (Proof), MPa 330
290

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 520
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
48
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.1
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.5
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1150
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
100
Resilience: Unit (Modulus of Resilience), kJ/m3 790
220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 35
19
Strength to Weight: Bending, points 39
19
Thermal Diffusivity, mm2/s 58
13
Thermal Shock Resistance, points 16
16

Alloy Composition

Aluminum (Al), % 91.5 to 94.5
0
Carbon (C), % 0
0.35 to 0.4
Copper (Cu), % 0.5 to 1.1
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
98 to 98.6
Magnesium (Mg), % 0.8 to 1.4
0
Manganese (Mn), % 0 to 0.050
0.7 to 0.9
Molybdenum (Mo), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 4.2 to 5.2
0
Residuals, % 0 to 0.15
0